AD-A009 936

PRIM USER'S MANUAL

Louis Gallensoun, et al

University of Southerrn California

Prepared for:

Advanced Research Projects Agency

April 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

A s bkt o

N

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BELOFE COREDET LG AR
1. REPORT NUMBER 2. GOVY ACCESSION NO.! 3. RECIPIENT'S CATALCG NUMBER
ISI/TM-75-1 /4‘_/7 A 06 S 9.3 b
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Technical

PRIM USER'S MANUAL

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s; 8. CONTRACT OR GRANT NUMBER(9)

Louvis Gallenson, Joel Goldberg, Ray Mason, leHC 1572 C 0308
Donald Oestreicher, Leroy Richardson

9. PERFQRMING ORGANIZATION NAME AND ADDRESS
USC/Information Sciences Institute

4676 Admiralty Way ARPA Order #2223
Marina del Rey, CA 90291

0. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

1l. CONTROLLING ZFFICE NAME AND ADDRESS 2. REPORT DATE

Advenced Research Projects Agency April 1975

w

1400 Wilson Blvd. T NUMBER OF PAGES

‘_r_ALLLng.tan.,ALi.[ginio 22209 135
4. JAONITORING AGERCZY NAME & ADDRESS(! dJdifferent from Controlling O*fice) 8. SECURITY CLASS. (of thie report)

smEsssssss 1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

This document approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMENTT (of the abetract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree eide if neceseary and identify dby block number)
ARPANET, control memory, microprocessor, microprogramming,
m. croprogramming language, microvisor, MLP-900, operating systems,
resource sharing, TENEX, time sharing, writable control memory

20. ABSTRACT (Continue on reveree eide if neceeeary and identify by block number)

This document is a four-part technical manual to aid the useis of the Frogramming
Research Instrument (PRIM), a major time-shared microprogramming facility which
pemits individual researchers to create specialized computing systems adapted to their
needs. The document consists of an overview, a user's guide, and reference manuals
for the General Purpose Microprogramming language (GPM) ard the MLP-900 micro-
processor.

DD . o', 1473 €eoimion oF 1 nov 63 1S oBsOLETE
S/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

T

TO THE UStR:
We have worked hard to make this technical manual as accurate and complete as
possible. However, since mistakes are known to creep into even the most sincere
of efforts, we would apfreciate your calling to our attention any vechnical or
typographical errors, omissions, inconsistencies, cr ambiguities you notice while
perusing 1t. Postage-paic preaddressed reply cards have been included below for
your convenience. Plea.2 jot down the problem and the page on which it occurs,
tear out the card, anua drop it in the mail.

Thank you.

The Publicatiens Group at ISI

ERROR PAGE

prim

ERROR PAGE

- ———— —— e = - —— T —— " ———

prim

|S|/TM‘75'|
April 1975

ARPA ORDER NO. 2331

PRIM

User’s Manual

Louis Gallenson
Joel Goldberg

Ray Masor

Donald Oestreicher

Leroy Richardson

INFORMATION SCIENCES INSTITUTE

4676 Admvalty Way/ Marina del Rt_]/Ca/lfnn/m 00291

,lﬂ\'ll'l:'KSi?"' OF SOUTHERN CALIFOKNITA (213)822-1511

|

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RFSEARCH PROJECTS AGENCY UNDER CONTRACT NO DAKHC1S 72 C 030R ARFPA ORDER

NO 2223 PROGRAM CODZ MO D30 AND 3P10
VIEWS AND CONCLUSIONS CONTAINED IN THiIS STUDY ARF THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPREGENTING THE
OFFICIAL OPINIOM OR POLICY OF ARPA. THE US GOVERNMENT OR ANY OTHER FERSON OR AGENCY CONNECTTD WITH THEM

TH!S DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

ACKNOWLEDGMENT

The members of the PRIM project would like to gratefully acknowiedge the intr: est,
cooperation, end support they received from the STANDARC Computer Corporation,
manufacturers of the MLP-900 microprocessor. Special thanks are due to the firm’s

president, Mr. James P. Hynes, whose many efforts on behalf of the project were and
are very much acoreciated

i &

CONTENTS

1. OVERVIEW 1

1.1 Hardware 1
1.1.1 PDP-10 2
1.1.2 MLP-900 2

1.2 Software 3
1.2.1 GPM and the GPM Compiler 3
1.2.2 MLP-900 Microvisor 3
1.2.3 PDP-10 Support Programs 4
1.2.4 User’s Interprster and Target Program 4

2. USER’S GUIDE 5

2.! Introduction 5

2.2 MLP-EXEC S
2.2.1 Access to MLF-EXEC 5
2.2.2 Command Format 6
2.2.3 Commands for Control of the MLP Context 7
2.2.4 Coramands ior Control of the Target System 10
2.25 Commands for File Input/Qutput 12
2.2.6 Other Commands 13
2.2.7 MILP DDT 14

2.3 The MLP-900 Microprogram Supervisor 16

2.3.1 Control Memoary 17

2.3.2 Main Memory 17

2.3.3 Extended Stack 17

2.3.4 Microvisor Calls 18

2.3.5 Communication with TENEX 19
2.3.6 User Microcode Action Requests 19

2.4 The TENEX MLF-900 Driver 19
2.4.1 MLP-200 Context 21
2.4.2 MLP-90C Target System 21

3. GENERA! PURPQSC MICROPROGRAMMING LANGUAGE
REFERENCE MANUAL 29
3.1 Introduction 29
3.2 Basic Language Svmbols 29
3.2.1 Identifiers 29
3.2.2 Reserved ldentifiers 30
3.2.3 Numbers 30
3.2.4 Blanks 30
3.2.5 Nonalphanumeric Characters 30
3.2.6 Examples of Basic Symbols 31
3.3 Program Structure 31
3.3.1 Declarations 31
3.3.2 Statements 33
3.3.3 Closing 33
3.4 Pseudostatements 33
3.4.1 ORIGIN 33

3.4.2 COMMENT 33

3.4.3 OQutput Control 34

3.5 Statements 34

3.6 Assignment Statemen!s 35
3.6.1 Arithmetic Assignment 35

3.6.2 Boolean Assignment 37
3.6.3 Data Vransfer 37
3.7 Control Statements 40
3.7.1 Block 41
3.7.2 8REAK 4:
3.7.5 Branches 41
3.7.4 Labeis 42
3.7.5 DO.BEGIN 42

3.7.6 IF 43
3.7.7 3witch 44
3.8 Low-Level Statemerts 45

3.8.1 INCREMENT/DECREMENT 46
3.8.2 BLOT 46

3.8.3 CEDE 46

3.8.4 SHIFT 47

3.8.5 MULTIPLY/DIVIDE 47

4. MLP-900 REFERENCE MANUAL 48

4.1 Intr Jduction 48

4.2 Operating Engine 45
4.2.1 General Registers 50
4.2.2 Mask Regislers 50
4.2.3 Miscellaneous Registers 51
4.2.4 Auvitary Memory 52
4.25 Exchange Rus 52
4.2.6 Translator Memory 53
4.2.7 Supervisor Language Board 55
4.2.8 User Language Board 53
429 GEAR 54
4.2.10 CEDE 57
4.2.11 SHIN 61
4.2.12 GENT 64

4.3 Controi Engine 65
43.1 Flip-Flops 65
4.3.2 Pointer Registers 69
43.3 Miscellaneous Registers 69
4.3.4 Subroutine Stack 70
435 BRAT 71
436 BENT 72
43.7 BORE 72
43.8 BRAD 73
439 BEAD 74
43.10 BLOV 75
43.11 MAST 78

43.12 MOVE 78

43.13 User-Level Action Requests 80
43.14 Target System Interrupts 81

APPENDIX A. CPM RESERVED WORDS3 85

APPENDIX B. USING THE GPM COMPILER 90

APPENDIX €.

C.l

Introducticn 94

HARDWARKE 'NSTRUCTION ENCODING 94

C.2 For the Operating Engine 94

c3

C.2.) A QOperands
C.2.2 8 Operunds
C.2.3 Shift Amounts
C.2.4 GEAR 96
C.25 CEDE 97
C.2.6 SHIN 98
C.2.7 GENT 99
For the Control Engine
C.3.1 Flip-Flops
C3.2 CE Registers

94
95
95

99

99

100

C.3.3 Relative Addresses 109
C.3.4 Boolean Expressions 100

C35 BRAT 101
C3.6 BENT 102
C3.7 BORE 102
C3.& BRAD 103
C3.9 BEAD 103
C.3.10 BLOT 105
C3.11 MAST 106
C.3.12 MOVE 106

APPENDIX D. 1/O INTERFACE

D.1
D.2
0.3
D.4
D5
D.6

Introduction 108

108

Command/Status Register 108

DATAQ and DATAI

109

MLP-900 interface Manipulation 109
PDP-10 Interface Manipulation 110

IPL Mode n

APPENDIX E. LANGUAGE BOARDS

REFERENCES 117

INDEX

118

112

1.1
1.2
4.1
4.2
4.3
C.l
C.2
C.3
C4
C5
C.6
c.7
C.8
C9
C.10
C.11
C.l2
C.13
C.14
C.15
C.16
C.17
cC.18
C.19
c.20
0.1
El

vii

FIGURES

Basic PRIM Configuration i
MLP-900 Configuration Py
Operating Zngine: GEAR 55

Shifter Boundary Conditions 56
MINIFLOW Status Word 9

A Operand Format 94

B Operand Format 95

GEAR Ministep 97

CECE Ministep 98

SHIN Ministep 98

GENT Ministep 99

7.n Encoding 99

CE.n Encoding 100

2nolean Expression Encoding 101
BRAT Ministep 102

BENT Minictep 102

BORE Ministep 103

BRAD Ministep 103

BEADO Ministep 104

BEADI Ministep 101

BEAD2 Ministep 105

BEAD3 Ministep 105

BLOT Ministep 106

MAST Mii.istep 10¢

MOVE Ministep 107
Command/Status Register Format 108
Language Board Input/Output Signals 113

Preceding page blank

viii

TABLES

2.1 MLP Context 20

2.2 }'LP States 27

4.1 Operating Engine Address Space 50
4.2 GEAK Flip-Flops 57

4.3 Flip-Flops (Names and Groups) 66
4.4 Action R:quests 82

C.1 Shift Amount Encoding 96

C.2 GEAR Arithmetic Codes 96

C.3 CEDE Exchange Codes 97

C.4 SHIN Shift Codes 98

C5 GENT B Cperand Groups 99

C.6 Boolean Expression Types 101
C.7 MAST Logical Codes 106

C.8 MOVE Codes 107

. " T T T T ——

L3

1. OVERVIEW

The Programming Research Instrument (PRIM) projec' has created a fully protected
experi~ental computing environment with continunus multiuser access. The !/O and
user irteraction facilities are provided by the TENIX time-sharing system[1,2] of Bolt
Beranek and Newman 'nc. (BBN). The computation facilities are provided by the
MLP-2CO, a flexible, pc:verful microprogrammed processor developed by the STANDARD
Computer Corporation[3-€]. PRIM’s multiaccess system allows each researcher to
create his own specialized computing engine that he :an :hange and adapt to his
specific needs.

PRIM is imacmented on a system that can be viewed on four levels: hardware,
scftware, user interpreter/emulatcr, and user to. get program.

The PRIM hardware and software together provide a working 2nvironment in which
the user can implement his own computer in microcode and run that computer in his
target program environment.

1.1 HARDWARE

The hardware system is based on two processors: the Digital EqLipment Corporation
PCP-1C and the STANDARD { omputer Corporation MLP-900 prototype processor. The
PDIF- (0 2nd MLP-900 share memory as dual processors; the MLP-900 is a device on the
PDP-10 1/O bus (see Figure 1.1).

POP-10 I/O_ Bus MLP-900
p
N
P?:B Pager
ger
Memory Memory
Bus Bus

256K 4-vioy interleaved
36-bit memory

Figure 1.1 Basic PRIM configuration

-

i il

OVERVIEW 2
Hardware

1.1.1 PDP-10

The POP-10, connected to the ARPANET, ruas under the BBN TENEX time-sharing
system on a paged virtual memory. The process~. has 256K words of 36-bit memory.
The 1/0 performed by TENEX includes file, termiral, and network handling, swapping, and
all other accesses to peripheral devices.

1.1.2 MLP-$00

The MLP-900 is a vertical-word microprogrammed processor (microprocessor) that
runs sy’.chronously with a 4-MHz clock. It is characterized by two parallel zomputing
engines: the Or Jting Engine (OE), which performs arithmetic operations, and the
Cor*rol Ergire (CE), which performs control operations (see Figure 1.2). The OE
contains 32 36-bit general-purpose registers for operands and 32 36-bit mask
registers to specify operand fields. A 1K 36-bit high-speed auxiliary memory is
associated with the OE. The CE contains 256 state flip-fiops, a 16-word hardware
subroutine return stack, and 16 8 it pointer registers.

OPERATING ENGINE CONTROL ENGINE
(1/O, arithmetic, logic) (Branches, testing)
Ge.eral register: Flip-flops
32x 3¢ bits, R.0-R.37 256 x 1 bits, F.0-F.377
Ausiiiary memory Pointer registers
1K x 36 bits, A.0-A.1777 16 x 8 bits, P.0O-P.17
Mask registers* Subroutine stack
16 x 36 bits, M.0- M. 17 16x 16 bits, $,0-5.17
CONTROL MEMORY
4K x 36 bits

16 x 35 bits privileged
Figure 1.2 MLP-900 configuration

The MLP-900 is accessible only through the FOP-10 as outline' above (i.e., the !/O
bus and shzred memory); no provisions have been made for dir:ct ccnnection of
paripheral devices.

The speed ar. pcwer of the MLP-900 may be conveniently understood in terms of
its ability to emulate better vnow. machines. Emulation of the IBM 360 mactine
language in~(ructions woulu produce an estimated execution rate as low as half that of
an IBM 330/65. A PDP-10 can be emulated at a rate approximating a KA10 CFU.
How_ver, in two high-level languages investigated, an estimated order-of-magnitude
increase in execution rate of source statements can be attained by implementing those
lang’.ages d rectly rather than emulating an ‘ntermediate target machine.

ésd

OVERVIEW 3
Hardware

The MLP-900 is particularly well suited for investigating direct lznguage emuiation,
since it has the ‘lexibility of a large (4096 word x 36 bit) writable contral memory. in
addition, through the use of special-purpose hardwzre languagze boards, the basic
architecture of the M_P-900 can be converiently expanded and its speed incteased for
specialized language-processing tasks.

The environment of the MLF-900 further promotes easv experimentation and user
access. The TENEX host system wil! provide not only complete 1/0 handlin~- for the
MLP-900 but also a developed (and in many cases familiar) environment for users.
Together these two advanced systems should provide a most powerful and useful tool.

1.2 SOFTWARE

The PRIM software conc'ste of the MLP-900 Micruprogrammirg Supervisor
(Microvisor), the TFNEX Driver for the MLP-900, the TENEX MLP-FXEC program, which
provides interactive access to PRIM for a user at a TENEX terminal, and a compiler ior
the General Purpose Microprogramming Language {GPM).

1.2.1 GPM and the GPM Compiler

GPM is a high-level machine -yriented language desigried explicitly for the MLP-500.
As a high-leve! languag., 3PM oifers a blnck struciur2 and statement syntax s.in'ar to
Pi./1 or Algol. The soecific siatement types defined in GPM are generalizations of the
actual MLP-900 "MINIFLOW" instruction set; constructs compietely foreign to MINIFLOW
{e.g., multiplication) do not appear in GPM. As a simple example of MNIFLOW
generalizaticn, consider that the result of a GEAR (GEneral ARithmetic) ministep may be
snifted left or right only by 0, 1, 2, 4, 6, 8, 12, or 1€ Lits; in GPM, any shift amount may
be specified, and tie compiler will generate multiple shifts as required.

As the produciicn language for 't MLP-300, (M is constrained to satisfy many of
the usual requitements of an asser'ly language. First, ther2 is a well defined subset
of GPM statements that produces exactly one ministep per statement; the subset is
capable of generating all possible ministeps. Second, multi-ministep statements do not
generate implicit Liae effects; for ex: nle, a complex arithmetic assignment which
veguires a temporary register for an intermediate result will generate a compile-time
error unless the program has explicitly declaicd some register to be available as a
temporary.

1.2.2 MLP-900 Micreviser

The MLP-300 Microprogram Supervisor (Microvisor) is a small, fully protected
resider! system that controls the MLP-900 and its communication with the PDP-10. It
loads and unloads the user’s MLP-900 context upon command from the FOP-10,
supports paging of the user target program, protects mein memory and ‘he rest of the
PDP-10 system from user interpreter e:rors, and provides that interpreter with some
services, such as an extended subroutir2 stack and calls for external communication.

e o

OVERVIEW q
Software

1.23 PDP-10 Support Programs

The PDP-10 TENEX software fur support of the MLP-900 consists of a Driver to
controi communication with--and sharing of--the MLP-900, and a subsystem (MLP-EXEC)
tc allow easy interactive user access to the MLP-900.

MLP-EXEC provides an environment in which the user at a terminal can compile,
load, execute, and debug MLP-900 microcode in a manner similar to that used for
debugging programs on the POP-10. In addition, he can create and debug target
programs and environments, although these tools must be provided at a very primitive
level, since \!' P-EXEC cannot know the nature of the target environment.

The MLP-900 Driver is the extension in TENEX of the Microvisor; all communication
with the Mi.P-900 goes through the Driver. While new microcode "machines" can be
designad and debugged under the MLP-EXEC, completed ones will work directiy through
their own terminal subsystems, which witll communicate directly with the Driver.

1.2.4 User’s Interpreter and Target Program

The user’s interpreter is a progranr written in GPM to run on the MLP-900; it
defines a (re-entrant) MLP-900 contro! memory image. This image and all the
nonprivileged registers and flip-flops within the MLP-900 comprise the MLP-900
context; users’ contexts are 'oaded and unloaded as the MLP Driver shares the MLP
among different users.

The context defines the user’s interpreter (or target machine) and operates upon
the user target program in a totally arbilrary way. The only constraint upon the target
program is that it fit into a 512K 36 -bit (virtual) memory space.

o p—r - i sl A, T el il i = = B ——

(8]

2. USER'S GUIDE

2.1 INTRODUCTION

As explaineu in Section 1.2 of the previous chapter, the PRIM software corsist: of
the MLP-900 Microprogram Supervisor (Microvisor), the TENEX Driver for the MLP-¢09,
and the TENEX MLP-EXEC orogram, which provides interactive access to the MLP-100
for a user at a TENEX terminal. This chapter provides a detailed guide to the PRIM
software (with the exception of the GPM compiler, which is discussed separatel in
Chapter 3). Section 2.2 describes MLP-EXEC and the farilities it provides to the user
for constructing, running, and debugging both MLP-S00 microcode and the associated
target system. Secticn 2.3 describes the MLP-900 Microvisor and the services it
provides, as well as the restrictions it places on tnat microcode. Section 2.4 describes
the MLP Driver and the TENEX JSYS’s required to communicate with it, which comprise
the interface to the MLP-900 used by MLP-EXEC. This section will be of direct interest
only to those who wish to replace MLP-EXEC with another subsystem cf their own
design.

2.2 MLP-EXEC

MLP-EXEC is a TENEX subsystem that allows interactive access to the MLP-900 from
a user at a terminal. MLP-EXEC is modelled after the TENEX Exec in iis general
command format; the specific commands are desizned to allow user access to ail phases
of MLP-900 operation.

2.2.1 Access to MLP-EXEC

As a TENEX subsystam, MLP-EAEC is entered by typing "MLP" to the TENEX Exec
program:

@MLP
MLP EXEC 1.0

>

The MLP-EXEC "prompt” character, ">", signals the user to enter a command. Upon
completion of command execution, MLP-EXEC prompts again.

Commands to MLP-EXEC can speci any of several types of actions:

® Control the loading, execution, and debugging of the user’s MLP context, a
structure which includes both the MLP-900 control memory and all the
(nonprivilegad) MLP-900 registers. All commands specific to the context are
prefixed by a period (.). The context defines the target machine and, in general,
its current state.

USER’S GUIDE 6
MLP-EXEC

® Contrdai the loading and debugging of the target system, a 256K virtual memory
in which the target machine (as defined by the MLP contexi) runs. All
commands to control the target system are prefixed by a slash {/); in general,
th.se commands are identical to the TENEX Exec commands of the same name.

® Define the input/output files tor MLP execution.

& Miscellaneous other commands, such as STATUS, QUITMLP, EXEC, and sc forth.

2.2.2 Command Format

A command consists of an initial key word (or portion of a key word) followed by
zero or more argument fields. MLP-EXEC gror.pts for each field required by the user’s
command. The key word and argument fields are separated from one another by the
foliowing field separator characters (separators): space, return, linefeed, tab, formfeed,
vertical tab, and Escape.

Additionally, two characters (Control T and Control C) act ac complete commands in
themselves to control MLP execution and to provide status information on the MLP.
Command Key Words and Recognition

A key word is defined as a sequence of characters other than the separator
characters and the semicolon (which is used for comments).

Like TENEX Exec commands, MLP-EXEC commands can be abbreviated to just enough
characters to distinguish them from -~ther commands. Similarly, if the abbreviated key
word is terminated by an Escape, the MLP-EXEC will, upon recognition, type back the

rest o' the key word. I the command is not recognized, MLP-EXEC will ring the
terminal bell and await additional input.

Command Editing

Certain characters serve to edit a command key word, as follows:

e Control A,
Delete (DEL) - Tese backspace one character position, erasing the character
from the input.

® Control X - This erases the entire word so far entered.

® Control R - This types out the word s0 far entered.

These characters are also used for editing command argument fields, except that

UEL carnot be used for backspacing a file name argument. An argument field
previously completed (i.e., foliowed by a field separator) cannot b~ edited.

preves — - e PP il i i kb

USER’S GUIDF. 7
MLP-EXEC

Comments in Commands

The semicolon (;) is used to begin a comment; everything from the seniicolon to the
following return or linefeed is ignored by MLP-EXEC (but retyped by Control R).

Exampla:
~THIS iS THE SAME AS A BLAMK LINETR
;THIS IS THE SAME AS A BLANK LINE
>EYEC; INVOKE THE TENEX EXEC
ISI-TENEX 1.31.1 ISI-TENEX EXEC 151.3
@

Command Termination and Confirmztion

Most commands to MLP-EXEC are not executed until a confirming return or linefeed
is typed. The confirmation is normally not required, however, if the character
terminating the last argument field is a return or linefecd. Some commands require an
additional expiicit confirmation, since they change or destroy information. A few
commands require no confirmation, but are executed upon recognition of the last fiald.

Control C. Control C is valid at any time, terminating the current operation and
returning to the MLP-EXEC command level. During command input, the partial command
is aborted. During MLP execution, that execution is interrupted (this is the only way to
stop a looping MLP program).

Contrci I. Control T is valid at any time, and yields a message regarding the state
of the MLP and the value of the current address register.

Exar. le:
<17>
MLP RUNNING AT LOC 451

2.2.3 Commands for Control of the MLP Context

These commands begin with a period (.) to distinguish them from similar commands
for the target system.

.LOAD

.LOAD prompts for a list of files to be locded (the file or files should be tire output
of a GPM compilatizn). The files are specified as a list of file specifiers, e.g., A.3.£BIN.
The list is termina.ed by a Return or a Delete (Delete cancels the command).

.LOAD first clears the previcus context; each file specified is then loaded into
control memory. Any overlap of loaded files is ignored; any overlapped location will
have as its value the last item loaded in that location. If any fi'e specifies a starting
address, then that address is retained by MLP-EXEC as the starting address for
execution.

USER’S GUIDE 3
MLP-EXEC

As a cafety feature, any locations not loaded by any of the files are loaded with
Halt ministeps. It should also be noted that contrul memory locations 7000 through
7755 are not part of the user’s context; although these locations may be loaded with
the .LOAD ccmmand, they will not be loaded into the MLP’s control memeory. These
Incations may be used to preload certain of the MLP registers; if not otherwise set, they
will be set to 0. For more informaiicn, see Section 2.4 on the MLP-90u Driver.

Example:
>LOAD
GPM BINARY FILES: TESTI.BiN,<USER2>%.BIN
LOADED TEST1.BIN;S
LOADED <USER2>TEST3.BIN;4
LOADED <USER2>TESTA4.BIN;4
>
Errors:

If one or more of the files cannot be !oaded, an error message will be given, vut loading
will continue on the files remaining to be loaded.

START

.START initiates ALP executicn of the context, beginning at the starting address,

after amending parts of the context as follows:

P.6 « 2 ! STACK POINTER

S.2 « Starting address:

S.1 « 7200 ! ILLEGAL, to detect stack uinderflow

ARL.S « FALSE;

CE.13 ~ 0;

INPW « FALSE;

CE12 «0(77)
After the context is swapped into control memory, microcode execution is always
initiated by a RETURN ministep.

Errors:
NO PROGRAM No MLP context has been lcaded
.CONTINUE
.CONTINUE resumes execution of the MLP context "as 1" after interruption.
Errors:

NO PROGRAM No MLP context has been loaded
NOT STARTED

USER’S GUIOE 9
MLP-EXEC

.RESET

.RESET clears the MLP context. The use of .START at this point will cause the error
message "NO PPOGRAM" to be typed.

.ENTRY

.ENTRY allows the user tc set the starting addres< manuaily, as an octal number, or
as a hexadecimal number preceded by an apostrophe (°).

.RUN

.RUN nrampts for the name ., the GPM binary files to be run, LOADs them, and
.STARTs them at the starting address of the last file loaded.

Example:
> RUN
GPM BINARY FILES: TEST.MLP
LOADED TEST.MLP;1

Errors:
All the errors possible under .LOAD and START are possible.
.SAVE
.SAVE prompts for the file namz under which to save the current MLP context, and

saves the context on the file so that it can be restored with a subsequent .GET
command. Both control memory and all registers are saved.

Example:

> SAVE

FILE NAME: TEST2.MLP[NEW FILE]

>
Errors:

? NO CONTEXT TO SAVE No contexi has been loaded
.GET

.GET prompts for the name of a file which was .SAVEd, then restores the MLP
context from that file. The starting address is obtained from the restored stack.

Example:
~.GET
FILE: TEST.SAVE[Old version]

>

USER'S GUIPE 16

MLP-EXEC
Errors:

FILE NOT GETTABLE The file was not originally
saved in such a way that it
can be restored into the MLP
context using MLP-EXEC.

.0DT

.DDT invokes MLP DDT to let the user examine and change the MLP context
currently loaded. MLP DDT is described separately iater in this section.
ARSTATUS

Reports all of the MLP AR’s associated with external events. For each active event,
the associated AR(s) are specified by ar 8-bit mask, with the most significant bit (2GO)
corresponding to F.130 and the least significant bit (001) to F.137.
.EOF

Sets e AR mask associated with the end-of-file condition (or any MLP input
channel). The mask is specified as an octal number less than 256.
ANPUT

Sets the AR mask associated with the input-ready condition for a given MLP input
channel. The AR(s) is sent to the MLP-900 wnenever that channel’s input buffer
becomes nonempty, or whenever the buffer remains nonempty after a byte is read.
(AR(z) is sent cnce per byte.)

2.2.4 Commands for Control of the Target System

These commands begin with a slash (/) to distinguish them from similar commands for
the MLP context.

/LOAD
/LOAD runs the standard TENEX loader to load relocatable binary file(s) into the

target cystem address space. Descriptions of the lvader, which is identical to the
TENEX Exec "LOADER" com:yand, can be found in Refs. 7 and 8.

USER’S GUIDE 11
MLP-EXEC

Eyample:
>fLOAD
*/S
*TEST.MLP
LOADER 3+3K CORE
MAX 400 WORDS FREE
EXIT
1C

>
JGET

/GET clears the current target, then does a GET into the target system address
space of a core image saved by SAVE or SSAVE. It is identicai to the TENEX txec "GET"
cemmand.

Example:
>/GET
FILE: TEST.SAV[O!d version]

>

/MERGE

/MERGE is similar tc GET but does not require initial clearing of the target system.
It is identical to the TENEX Exec "MERGE" command.

Example:
>/MERGE
FILE: TEST3.SAV[OIid version]

>

/DOT

/CDT invokes the TENEX DDT package on the target system. It is identical to the
TENEX Exec "DDT" command.

/SAVE, /SSAVE

These commands SAVE or SSAVE the core image (except DDT if invoked) on a file.
SSAVE is reserved for shared files. These commands differ from TENEX Exec only in
saving the entire address space automatically.

Example:
>/SAVE
TARGET SPACE ON FILE: FOO.SAV [New version]

>

USER’S GUIDE 12
MLP-EXEC

/RESET

/RESET clears the target system. It is idcitical to the TENEX Exec "RESET™
command; it also causes the context to become "NOT STARTED."

/MEMSTAT

/MEMSTAT g:ves a page-by-page indication of the state of the target system. it is
identical to the TENEX Exec "MEMSTAT" command.

2.25 Commands For File Input/Output
INPUT, QUTPUT, APPEND

These commands estabiish a TENEX file for reading, writing, or appending (¢zyuential
mode only) by the MLP program on a given channel. Arguments are file name, channel
number, and byte size for opening a file. Files can be independently assigned to each
of the 16 input and 16 output channeis available (channels are numbered 0 through 15).

Example:
>INPUT
FILE: A.B [Old version]
ON MLP CHANNEL: 0O
WITH BYTE SIZE: 7

>

Each file is opened ("thawed"”) <5 that reading and writing may be done to the same
file simultaneously. If a file i1s already open on the channel, the MLP-EXEC, after
additional confirmation, closes and releases the old file.

CLOSINPUT, CLOSOUTPUT
These commands close a channel; each requires an explicit confirmation.

Example:
>CLOSINPUT
INPUT CHANNEL NUMBER: 4
CLOSING ABS
[CONFIRM]

el

FILESTATUS

This command types the current assignment of files to MLP channels (and to TENEX
JFN's).

USER’S GUIDE 13

MLP-EXEC

Example:
>FILESTATUS
CHAN: JFN: FilE: POSITION:
INPUT FILES:
C 5 AB;4 382
OUTPUT FILES:
0 6 A.BS 1 0

2.2.6 Other Commands
EXEC

This command loads and starts an inferior TENEX Exec, without affecting the <tate of
the MLP context or target system. The use. may return to MLP-cXEC by executing a
QUIT from the TENEX Exec.

Example:
>EXEC
ISI-TENEX 1.51.0 ISI TENEX EXEC 1.77.6
/;miscellaneous stuff that the user wante to do...

@QUIT

>

QUITMLP

This command exits from the MLP-EXEC. The MLP context and target system are
cleared before exiting.

LOGOUT

This command clears the context and the target system and logs out the job.
? (The Help Command)

This command lists ali the MLP-EXEC commands available.
STATUS

This command prints a brief summary of the state of both context and target
system, e.g.,
>STATUS
CONTEXT LOADED, ENTRY ADDRESS O
NO TARGET SYSTEM LOADED
(The context can be run without a target system; the first memory reference, if any, will
cause termination due to an illegal memory reference.)

USER’S GUIDE 14
MLP-EXEC

2.2.7 MLP DOT

MLP 0DT, entered by the .DDT command from MLP-EXEC, allows the user to examine
and modify his context (the correspunding facility for the target space is TENEX DDT,
invoked by the /DDT command).

Examining MLP Localions

MLP locations are of two kinds: control memory and register locations. Control
memory locations are specified by numeric addresses, e.g., 172, or ’A39.x The registers
are specified by symbolic adcresses, e.g., P.0 or R.36.

To evmine a specific iccation, type its address, followed by a slash (/).

Example:
74/
74 0 GEAR 2 360 127 27 R27<R.27(M.17)%; P.4/
P4/5

In this example the user examined control memory location 74 (octai). After the
GPM listing-format typeout, the user asked to see the cortents of register P.4; P.4 was
typed out as an octal number.

Examining Consecutive Locations
After a location is examined, the character linefeed may be used to examine the

next location tollowing; the character between " and " may be typed to examine the
location preceding.

Example:
P.4/ P.4/ 5
PS5/ 27
ME/
M5/ 144)
M.4/ 67

Changing Typeout Modes

The typeout mode is initially octal. To change to hexadecimal. type ESC (the escape
key) X; to change back to octal, type ESC O (ietter C).

Modification of a Location

The location last examined rmay be modified. Two methods 4re available for
modification.

et cccn - -

* A leading apostrophe indicates a hexadecimal value on input.

i s d)

USER’S GUICE 15
MLP-EXEC

Direct Modirication

An oper location (including a control memory location) may be set to a numeric
value by typing the value followed “y return, linefeed, os "1". If linefeed or "T" is
typed, the next following or preceding location will be typed out and opened for
moditication. The new wvalue may be entered in either octal or hexadecimal; as noted
earlier, hexadecimal values are indicated by typing a leading apostrophe (*). (Note that
if the numeric value given is not a valid octal or hexadecimal integer, a question mark (?)
is typed and the modification .s not made.)

If the location being modified has fewer significant bits than the number supplied,
the least significant bits of the r.umber become the new value.

GPM Modification
To change a control memory address with the aid cf GPM, proceed as follows:
® Examine the location (this opens it for modification).
® Type "s": The prompt "GPM:" is made on the next line.
® Type in the new statement (or stetements).
¢ Terminate the change with Controi Z.

The GPM statement(s) are compiled and loaded beginning at the currently open
location. (Note that more than one consecutive location can be changed in this way; if
ORIGIN statements are included, noncontiguous areas of contro! memory may be
changed.)

Before typing Control Z, the change can be aborted by typing Control Q.

Breakpoints

A single breakpoint can be set in control memory, target memory, or both. To set a
control memory breakpoint, type

<address> ESC B
where "<address>" is the control memory address. To clear it, type
ESC B

(no address).

e i

USER'S GUIDE 16
MLP-EXEC
To set a target memory breakpoint, type
<address> ESC T
To clear it, type
ESCT
Action at a Breakpoint
A control memory breakpoint will cause execution of the specified location to halt
the MLP and to type out the address of the location at which execution so halts. A
target memory breakpoint will cause a similar halt upon any reference to the specified
target memory location. The control memory address of the FOP or SAD ministep
causing the reference will be the interrupted MLP program counter (PC) value.
Single-Step Execution
To execute a single control memory instruction, type
<address> ESC S
or simply

ESC S

(The current location is used for <address>.) After each step the address and contents
of the new control memory location are typed out and openea for modification.

Resuming Execution
Normal MLP execution may be resumed by typing
<address> ESC P
or

ESC P

2.3 THE MLP-900 MICROPRCGRAM SUPERVISOR

The MLP-900 Microprogram Supervisor (Microvisor) performs the usual functiens
expected of an operating system, except that it is written in m'crocode and supervises
the execution of microcode. The Microvisor interacts only witk the user microcode and
the TENEX MLP Driver; it does not provide any facilities for--cr impose any restrictions
upon--the user target system.

P T it ieiy et i

JSER'S NnUINE 17
The LILP-S. O Microprogram Supervisor

user microcode always runs in user mcde on the MLP-9N0; it is subject to the
restrictions imposed by the MLP-S00 hardware, explained in detail throughout Chapter
4 and summarized here:

® The BLOT ministeps which reference control memory (RCM, WCM, and WBP) are
prohibited in user mode. |If attempted in user mode, they generate a Supervisor
Facilities Action Request (SUPVF AR). User microcode is therefore incapable of
modifying itself.

® Certain registers are privileged and can be modified only in supervisor state;
an attemp. to modify one whiie in the user state generates a SUPVF AR. The
privileged registers include the (paging) translator memecry (XLATOR.777), half of
the C. miscellaneous registers (MISC.20 thru MISC.37), and seven bytes of the
CE flip-flops. These flip-flops and registers cont 3l the main memory paging,
the 1/O bus communication with the PDP-10, the internal AR (interrupt) system,
and other critical functions.

® User mode microcode may not brar -h to a supervisor mode location, except for
designated supervisor entry points; an attempt to do so results in a PROT
(Protection) AR.

2.3.1 Control Memory

The Microvisor occupies control memory from 7000 to 7755 (octal), inclusive; these
locations are not available tor user microcode. This includes all the locations associated
with AR’s of the first four priority levels; all such AR’s are handled entirely by the
Microvisor. Locations 7756 through 7777 (octal) are associated with the lowest AR
priority level (ARL.S) and target system interrupts; these locations are loaded as part
the user microcode context.

2.3.2 Main Memory

All main memory references by the user micrcrode are mapped into the target
system virtual memory. Page faults are handled by the Microvisor and the TENEX MLP
Oriver in the same way that TENEX handles them directly fo: TENEX processes.

2.3.3 Extended Stack

The Microvisor provides for automatic storing and relcading of the MLP subroutine
stack-upori-stack overflow anc underflow; no distinction is made between cccurrences
in user mode and supervisor mode. The extended stack is stored in the last page of
auxiliary memory (A 1400 through A.1777), using sucressive 16-word blocks as rneeded.
The four most significant bits of P.6, the stack poin’zr, are used as the extended stack
block index: O selertc A1400-1417, 1 selec’s A.1420-1437, .. 15 selects
A.1760-1777.

ke, NG 4 '-—‘.---_'-.!'n

USER'S GUIDE 18
The MLP-900 Microprogram Supervisor

Upor stack overflow, the thirleen words at the bottom of the stack (S.1 through
S.15) are stored in the parallel words of the current stack extension block and the stack
and its pointer adjusted appropriately. Upon underflow, thirteen words are reloaded
and the stack again adjusted. Words O, 14, and 15 ot each extension block are neither
used nor destroyed; they may be used for other purposes.

An “extended stack overflow" tault is gererated, and the microcode halted,
whenever a stack overflow uses block zero. There is no provision for detecting
extended stack underflow; if desired, underflow protection may be provided by planting
an error address in the stack. The maximum amount of stack space available, with P.6
initially set to one, is 209 words (15 stacked blocks of 13 plus 14 more in ‘he actual
stack. The minimum amount available, with P.6 initially set to 241 (block 15, word 1), is
the 14 words of actual stack; auxiliary memory wi. not be used except in the case of an
(erroneous) overflow or underflow of the stack. Intermediate initial values in P.6 will
allow other sizes of effective stack--and commit appropriate amounts of auxiliary
memory to the maintenance of that stack. The user’s stack requirerients must allow not
only for the maximum nesting in both main and AR code, but also for four levels of
Microvisor stacking.

The nth entry from the top ot the stack, 0 <= n < 15 (octal), is located as follows (all
numbers are octal):

If (P.6 and 17) > n
then S.0 @ (P.6 - n)
else A.1400 & (P.6 + 15 - n)

2.3.4 Microvisor Calls

Microvisor functions are available to the microcode via calls to cdesignated
Microvisor entry points. A guments are passed in register R.27, and R.36 when needed;
replies are received in the same registers. The entry names and their locations are
known by the GPM compiler; entry names are of the form "MLP.xxx".

CALL MLP.STOP nc arguments
Terminates microcode execution and informs the Driver; if continued, execution
will resume at the next ministep.

CALL MLP.PUT R.37 contains the output line number.
R.36 contains the data
Transmits the data to the Driver and return< immediately. Any error will result
in an asynchronous halt of the microcode at some subsecuent point.

CALL MLP.GET R.37 contains the input line number.
Gets a byte of data from the TENEX Driver and returns it in R36. Any error
will result in an immediate halt of the microcode; optivnally end-of-file is
signaled via a user-level AR.

T

USER’S GUIDE 19
The MLP-900 Microprogram Supervisor

2.3.5 Communication with TENEX

The microcode can perform I/O on TENEX files through the two Microvisor calls
which transmit data to and from the PDP-10. A maximum of sixteen lines are available
for input (to the MLP), and sixteen for output. Each Microvisor call transmits one byte
of (up to) 36 data bits. Each lir = actually used must first be defined at the TENEX end
(e.g., via the INPUT and OUTPUT zon .nands in MLP-EXEC); the use of an urd>fined line,
or an error on a defined line, causes execution to terminate due to a “"Communication
Error.”

Since 1/O is done through the TENEX Driver, it is quite expensive; large data
transfers are better done via the shared target system memory.

When the microcode is halted while in an input-wait staie, F.162, the input-wait
flip-flop, is set; clearing the flip-flop before continuing executiorn will turn the
interrupted GET into a null operation. Conversely, setting the flip-flop will cause an
extra GET on the line specified in R.G7.

2.3.6 User Microcode Action Requests

The MLP AR’s covered by ARLS5 (F.130 through F.137), plus the target system
interrupt AR, are entirely at the disposal of the user. The control memory locations
(7756 through 7777) and the flip-flops involved are all part of the user MLP context.

User AR’s can be generated by the user language board (the null language board
does not generate any AK’s), by the tracing mechanism, and by direct user ministeps.
In addition, the Microvisor will pass an AR to the microcode when an appropriate
external event (such as end-of-file) occurs; the particular AR associated with a given
event is determined by the AR masks in the MLP context.

Tracing of a Microvisor cail results in a total of three trace AR’s: the first
immediately after the cali--or immediately before the first Microvisor ministep--the
second and third upon exit from the call, ore while still in the Microvisor, and one just
before the continuation ministep.

2.4 THE TENEX MLP-900 DRIVER

Access to the MLP-900 from a TENEX process is accomplished via the MLP Driver in
TENEX. Communication with the driver is done through a series of JSYS’s which mimic
(roughly) the JSYS's for subsidiary fork control (see Chapier 6 of the TENEX JSYS
Manuai). The two principal elements involved in crerting and running the MLP are the
MLP context (the user microcode together with all the MLP registers) and the target
system upon which the context is tc operate. The calling process must build both
before establishing access to the MLP.

USER’S GUIDE 20
The TENEX MLP-900 Driver

Table 2.1
MLP CONTEXT
Relative
Location Contents
0 Control memory location O
1 Control memory lccation 1
6777 Cctrol memory location 6777
7000 R.O
7001 R.1
7037 R37
7040 M.C
7057 M.17
7060 MISC.0
7073 MISC.13 (an unimplemented register)
7074 MISC.36 (Target Address Comparand)
7075 MISC.37 (Control Memory Address
Comparand)
7076 MISC.16 (VAR)
7077 MISC.17 (MDR)
7100 (CE.O, CE.1), right justified
7101 (CE.2, CE.3)
7187 (CE.136, CE.137) or S.17
7160-7177 Not assigned
7200 JEN for outpul line #0
7217 JFN for output line #17
7220 JEN for input line #0
7237 JFN for input line #17
7240 AR mack for end-of-file
7241-7257 Other AR masks
7260-7277 nput ready AR masks for
lingz 20-217
7300-7677 Internal Driver information
7700-7755 Not assigned
7756 Control memory location 7756
7777 Control memory location 7777
10000 A0

11777 ALT77

Kr

USER’S GUIDE 21
The TENEX MLP-900 Driver

2.4.1 MLP-900 Context

The context is a structure that contains all the data necessary to load the MLP and
begin {or resume) execution of the desired microccde. It includes not only an image of
the MLP-9C? control memory, but also the internal MLP-900 registers and some cells
used by the Driver to implemeint MLP-900 communication with the PDP-10.

The context is 10 memory pages (5120 words) long, and must begin on a page
boundary in the caller’s address space. Its internal form is shown in Table 2.1.

Within the miscellaneous register<, MISC.36 arnd MISC.37 are mapped into the context
in place of MISC.14 and MISC.15, which do not exist. The two comparand registers,
althougt wrivileged, are loaded as part of the context, as are the two compare arming
flip-flops, F.160 and F.161, and the input-wait flip-flop, F.162. The microcode, however,
cannot affect either the comparands or the flip-flops.

Each of the AR masks consists of an eight-bit right-justified mask which is OR’ed
into the user AR byte ‘CE.13) by the Microvisor when the given event occurs. If the
mask is zero, the microcode cannot detect the condition.

Note that control memory locations 7000 to 7755 are occupied by the Microvisor
and are therefore nct considered part of the user context.

The output and input JFN's are used for the MLP-900/PDP-10 communication
available to the user microcode. When the microcode transmits a word to the PDP-10
over a given line, the driver effectively does a BOUT of the received data to the
selected output JFN; similarly, when the microcode requests a word from the PDP-10
over a given line, the driver does a BIN usirng the selected input JFN.

The JFN's can be any usable JFN except O, which is used to terminate MLP execution
when referenced.

Files must be opened (and positioned if necessary) before MLP execution begins;
any file error will terminate MLP execution.

2.4.2 MLP-900 Target System

The target system is the memory upon which the MLP context is to operate. It is
defined as a TENEX fork (or process), either the caller or a subsidiary fork established
solely for this purpcse. Typically, the target system fork will never be started on the
PDP-10; it exists to define an address space for MLP execution. The target fork AC’s
are mapped into locations O through 17 of the target memory as seen by the MLP.x

* For the convenience of the reader, the presentation of ihe commands that follow is
intended to duplicate the formai of the TENEX User's Manual[8].

i O i i i i

{!SER’S GUIDE 22
The TENEX MLP-900 Driver

CMLP
Creates MLP context and target system,
ACCEPTS IN 1: the pointer to tne MLP context in the
caller’s address space.
2: a fork handle for the target system.

CMLP

RETURNS +1:f unsuccessful, error number in 1
+2: 1f successful, MLP handle in 1.

The MLP handle returned is used in succeeding SMLP, HMLP, and RMLPS calls; it
remains valid until killed by a KMLP call. The context and the target system are bound
to the MLP until the caller executes a subsequent KMLP on the returned handle.
attempt to re-map context pages or kill the target system fork will yield undefined

results.

CMLP ERRORS:

CMLPX1: context not on page boundary
CMLPX2: MLP not available

FRKHX1: illegal fork handle

rRKHX2: cannot manioulate a superior fork
FRKHX3: cannot reference multiple forks

USER'S GUIDE 23
The TENEX MLP-900 Oriver

KMLP
Kills MLP
ACCEPTS IN 1: N'LP handle

KMLP
RETURNS +1: always

Kills the MLP association established by CMLP, releasing the binding of context and
target system.

Generates an illegal instruction pseudo-interrupt on error conditions I'sted below.

KMLP ERRORS:
MLPX1: invalid MLP handle

USER'S GUIDE 24
The TENEX MLP-900 Driver

IMLP
Interrupt MLP
ACCEPTS IN L: MLP Handle
2: AR Mask
IMLP
RETURNS +1: Always

Passes the indicated AR's to the microcode. B28 sets F.130, B29 sets F.131, ..
B35 sets F.137. If the microcode is halted, the bits are set in the memory image of the
context.

Generates illegal instruction pseudo-interrupt on error cunditions listed below.

IMLP ERRORS:

MLPX1: Invalid MLP handle

- >

<y

4>
<)

USER’S GUIDE 25
The TENEX MLP-900 Driver

SMLP
Starts (or resumes) MLP execution.
ACCEPTS IN 1: MLP handle

SMLP
RETURNS +]: always

Causes the context bound to the MLP handle to be ioaded into the MLP-900 and
microcode execution to begin (or resume). The Microvisor passes confrol to the context
microccde via the BORE (Return) ministep; therefore, the start/resume address is
defined by the velue of P.6 and the appropriate stack word in the context. It does
nothing if MLP already started.

Execution of the contexi microcode continues until either the microcode haits
(voluntarily or due to a fault) or the caller does an HMLP; upon termination of execution,
the caller is sent a pseudo-interrupt on channel 23. Between an SMLP and the
subsequent termination of execution detected by the pseudo-interrupt routine 7r by a
RMLPS--the context "belongs” to the MLP ard the Driver; any attempt to read or modify
it is invalid.

Generates an illegal instruction pseudo-interrupt on error conditions listed below.

SMLP ERRORS:
MLPX1: invalid MLP handle

USER'S GUIDE 26
The TENEX MLP-90C Oriver

HMLP
Halts MLP execution
ACCEPTS IN 1: MLP handle

HMLP
RETURNS +1: aiways

Terminates MLP-900 execution of the context microcode. Does nothing if the
context is already halted or was not started.

Generates iliegal instruction pseudo-interrupt on error conditions listed below.

HMLP ERRORS:
MLPX1: invalid MLP handle

USER'S GUIDE 27
The TENEX MLP-900 Driver

RMLPS
Reads MLP status.
ACCEPTS IN 1: MLP handle
RMLPS
RETURNS +1: always, with status word in 1, execution

time (in mithseconds) in 2.

The MLP status word consists of a state code in the left half and the microcode
program counter va've in the right half (see Table 2.2).

TABLE 2.2
MLP STATES
Code
{(Qctal} Status Context
-1 Unrecoverable Driver Error Stop(x) Valid
0] Running Invalid
1 I/O Wait invalid
2 Voluntza: y Termination Valid
(CALL STOP by the microcode)
) Target System Address Compare Stop Valid
5 Control Mem. , Adcress Compare Stop Valid
6 Supervisor Facity Violation Fault Valid
7 Protection Violation Tault Valid
10 Extended Stack Overrlow Fault Valid
11 Communication Fault Vald
12 Target System Memory Reference Fault Valid
13 "Recoverable” MLP Error Stop(*) Valid

The validity cf the context applies to the image of the context in the caller’s
address space. When it is valid, it may be inspected and;or modified arbitrarily.

in the cases marked (%), the Driver has also printed a message on its primary output
file. If an unrecoverable errcr, the Driver has also been killed, and ire MLP handle is
no longer valid. This represerts a hardware or system software failure .hich should
be reported to system personnel.

RMLPS ERRORS:
MLPX1: invalid MLP handle

29

3. GENERAL PURFPOSE MICROPROGRAMMING LANGUAGE REFERENCE MANUAL
3.1 INTRODUCTION

The General Purpose Microprogramming Language (GPM., iz - ° ~---'_vel language
developed by the PRIM project as a machine-dependent microproy, .. -ming language for
the MLP-900. It contains many special-purpose language form: reflecting actual
MLP-300 hardware features.

The assembler philosophy underlies the design of GPM, which allows the
programmer to create any instruction sequence and requires no run-time support
system, although syntactic block structure and high-level control structures are
provided to assisl the programmer. GPM is the primary language for the MLP-300 (no
assembly language is prr~ ‘ded) and, as such, was designed to be used by both the
diagnostic programmer ana ine researcher.

3.2 BASIC LANGUAGE SYMBOLS

GPM programs are composed of five basic symbols or syntactic entities. They are
as follows:

Identifiers (id)

Reserved identifiers
Numbers (number)

Blanks

Nonalphanumeric characters

3.2 1 !dentifiers

id «=
.word | word | id . subid

subid u=
word | number

word =
alpha | word alpha | word digit

number :=
digit | number digit

digit =
ol1r..1617
alpha =
E191AIBI..IYIZI
albl..lylz

Praceding page blank

GPM MANUAL 30
Basic Language Symbols

An identifier is a string of words (alphanumeric strings) or numbers separated by
periods. The first field must not be a number, and words cannot begin with a digit (O -
7). The last number (all-numeric) field is referred to as the indey; it is used extensively
for reserved identifiers (e.g., RO is general register O and R.17 is general register 17).
Nonreserved identifiers are used in four places in GPM:

o TITLE statement

® EQUELTE statement

® Block name

® Labels
3.2.2 Reserved identifiers

Reserved identifiers have the same syntax as identifiers and include all special
symbols in GPM. In the case of indexed reserved identifiers, they are all assumed to
have zero origin and will be referred tu in this manual by their upper bound. All
reserved identifiers are upper-case.
Example:

There are 32 general registers (RO - R37). R.37 will appear in all descriptions to

represent

ROIRI 1 ..IR361R37

Reserved identifiers cannot be used as labels or as the title. A complete list of ali
reserved identifiers is given in Appendix A.

3.2.3 Numbers

All numbers in GPM, including identifier index fields, are octal. Y.1973 is two
identifiers, i.e.,, Y.1 and 973. The numerals 8 and 9 are letters.

3.2.4 Blanks

All nonprinting characters (space, tab, linefeed, carriage return, and formfeed) are
blanks. Blanks separate numbers and identifiers; otherwise they have no syntactic or
semantic function. There 1s cne additional blank character, an arbitrary string starting
and ending with a percent sign (7). This is not the preferred method of comment, as
will be treated in detail in the discussion of the GPM listing format in Appendix B.

3.25 Nonalphanumeric Characters

All nonalphanumeric characters are reserved. Except for the period (), they are all
self-terminating and canno! appear as part of any symbol.

GPNM MANUAL 31
= Basic Language Symbols
o
3.2.6 Examples of Basic Symbois

The string R.1 ABC#1248X 12A.B;C.3.4X s interpreted as

R.1 Reserved identifier; index = 1
ABZ Identifier

® Character

124 Number

8X Identifier

12 Number

AB Identifier

i Character

C.3.4.X Identifier; index = 4

3.3 PROGRAM STRUCTURE

program =
TITLE id body closing

body ::=
declarationlist ; statementlist | statementlist

declarationlist =
declaration | declarationlist ; dec!aration

statementlist ::=
statement | statementlist ; statement

A GPM program starts with a title declaration. Tkre title must be a nonreserved
identifier. The body of the program has two parts: a declaration list and statement list.
The program ends with a closing or FINISH statement.

3.0.. Declarations

declaration =
pseudostatement | TEMPORARY rlist |
EQUATE symbol symbol | EQUATE symbol symbo! number |
DEFAULT TEST mode | DEFAULT CLEAR mode |
DEFAULT MASK M.17

rlist =
R.37 I rlist R37 I M.17 | rhist M.17

mode =
MODE TRUE ! MODE FALSE

The declaralions define conditions that will be active for the scope of the body in
which they are made. They fall into two general groups: The first group (EQUATES)
defines new symbols, and the second (TEMPORARY and DETAULTs) defines conditions

i

GPM MANUAL 32
Program Structure

relative to operating engine compilation. Pseudostatements are iisted under
declarations because they may appear anywhere in the program. They are discussed in
Section 3 4.

EQUATE

There are two forms of the EQUATE statement. The first takes two symbois and
equates the first to the second. For example, after the declaration EQUATZ PC R.3:
every occurrence of PC within the scope of the declaration will be interpretec as R.3.
The following are legal EQUATE statements:

EQUATE INDEX 3.6;

EQUATE MINUS.ONE 777777777777,
EQUATE EQ EQUATE;

EQ INFINITE.LOOP.START DO.BEGIN;

The sccond EQUATE form is used to equate blocks of indexed ames. For example,
after the declaration EQUATE AC.0 R.10 10; every occurrence of AC.O through AC.7
within the scope of the declaration will be interpreted as R.10 through .17,
respectively.

TEMPORARY

The TEMPORARY declaration declares 3eneral registers or mas). registers that may
be used as temporaries by the code .enera*ors. This declaration allows more
coraplicated arithmetic operations and data !ransfers to be compiled.

DEFAULT

Three conditions associatecd with arithmetic expres: sns will be fairly constant over
a large number of statements. These may be set by the DEFAULT sta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>